
STRUCTURAL PROPERTIES OF COSTAS ARRAYS

JONATHAN JEDWAB AND JANE WODLINGER

Abstract. We apply combinatorial arguments to establish structural
constraints on Costas arrays. We prove restrictions on when a Costas
array can contain a large corner region whose entries are all 0. In par-
ticular, we prove a 2010 conjecture due to Russo, Erickson and Beard.
We then constrain the vectors joining pairs of 1s in a Costas array by
establishing a series of results on its number of “mirror pairs,” namely
pairs of these vectors having the same length but opposite slopes.

1. Introduction

This paper deals with structural properties of Costas arrays.
Costas arrays were introduced in 1965 by J. P. Costas as a means of

improving the performance of radar and sonar systems [6]. A permutation
array A of order n is a Costas array if the vectors formed by joining pairs of
1s in A are all distinct. We use the standard labelling convention for arrays
(first index downwards, second index rightwards, both indices start from 1).
It is sufficient to consider only one of the vectors joining each pair of 1s in
a Costas array; by convention, we choose the vector pointing rightwards.
We follow other authors in also using the conflicting labelling convention for
vectors (first component horizontal, second component vertical), leading to
Definition 1.1.

Definition 1.1. The vector between ‘1’ entries Ai,j and Ak,` of a permuta-
tion array (Ai,j), where j < `, is (` − j, k − i).

The central research questions for Costas arrays are: For which orders
does a Costas array exist? How many inequivalent Costas arrays of each
order are there? How can the Costas arrays of each order be constructed
algebraically? A complete answer to each of these questions seems remote,
despite nearly fifty years of study. Only two algebraic constructions (the
Welch and Golomb constructions) and their variants are known, and the
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vast majority of the exhaustively determined Costas arrays (up to order 29)
are not explained by any known construction [19]. The smallest order for
which the existence of a Costas array is open is 32, and this has been the
case since 1984 [18]. However, settling the existence question for this order
through exhaustive search remains well out of computational reach, with an
estimated search time of 45,000 processor years in 2011 [10].

Researchers have instead sought to gain understanding by establishing
structural constraints on Costas arrays, often inspired by examination of the
known Costas arrays (see [15], [7], [9], for example). This approach appears
to be difficult, especially for arbitrary Costas arrays rather than those that
are algebraically constructed, and few such results have been found. Another
approach is to impose an additional constraint such as diagonal symmetry
or G-symmetry on a Costas array in order to facilitate theoretical analysis
and exhaustive computational search [3], [20], [8], [23].

In this paper we apply combinatorial arguments to prove new structural
constraints on Costas arrays.

Section 2 describes a key auxiliary 1985 result, due independently to Tay-
lor [22] and to Freedman and Levanon [15], that two Costas arrays of order
at least 4 always have a vector (joining pairs of 1s) in common. We give a
complete proof of this result, which illustrates several ideas used elsewhere
in the paper.

Section 3 studies Costas arrays that contain a large corner region whose
entries are all 0. In the case of even order, when the corner region is an
entire quadrant of the array, we use the Taylor-Freedman-Levanon result to
prove a 2010 conjecture due to Russo, Erickson and Beard [21]. We then use
techniques due to Erdős and Turán [12] and to Erdős et al. [11], following the
outline provided by Blackburn et al. [2] and by Etzion [14], to demonstrate
the asymptotic nonexistence of a Costas array of order n having an all-zero
corner region whose side length grows linearly with n.

Section 4 introduces the concept of “mirror pairs” in permutation (and,
in particular, Costas) arrays, namely pairs of vectors having the same length
but opposite slopes. We again use the Taylor-Freedman-Levanon result to
constrain the vectors contained in a single Costas array. We prove results
for arbitrary permutation arrays and for G-symmetric Costas arrays, and
outline results for algebraically constructed Costas arrays. These structural
results complement those due to Drakakis, Gow and Rickard [9], which con-
strain the vectors contained in two different arbitrary Costas arrays. A
further motivation for studying mirror pairs is that, if sufficiently strong
results can be found, the computational burden for determining whether or
not a Costas array of order 32 exists could be significantly reduced.
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2. The Taylor-Freedman-Levanon result

In this section we prove the Taylor-Freedman-Levanon result on common
vectors in Costas arrays, as Theorem 2.5. This result was proved by Tay-
lor [22] by considering the Lee distance between pairs of 1s in a Costas array
as well as the difference triangle of its corresponding permutation, and by
Freedman and Levanon [15] by considering the cross-correlation function of
the two Costas arrays. We instead use a proof due to Drakakis, Gow and
Rickard [8] involving just the difference triangle. We associate a permuta-
tion array (Ai,j) with the permutation α ∈ Sn by the convention that Ai,j = 1
if and only if α(j) = i.
Definition 2.1. The difference triangle T (α) of α ∈ Sn is (ti,j(α)), where

ti,j(α) = α(i + j) − α(j) for 1 ≤ i < n, 1 ≤ j ≤ n − i.
We use the standard labelling convention for arrays (first index down-

wards, second index rightwards) to number the rows and columns of the dif-
ference triangle. For example, Figure 1 shows the difference triangle of the
permutation α = [3,1,6,2,5,4], in which row 2 is the sequence (3,1,−1,2)
and column 4 is the sequence (3,2). The antidiagonals are the sequences(−2), (3,5), . . . , (1,3,−2,2,−1).

−2 5 −4 3 −1

3 1 −1 2−1 4 −2

2 3

1

Figure 1. Difference triangle of the permutation [3,1,6,2,5,4]
In preparation for the proof of Theorem 2.5, we give some basic properties

of the difference triangle of a permutation. The combination of Lemma 2.2(i)
(which is elementary) with Lemma 2.2(ii), due to Costas [4], shows that the
difference triangle is a setting in which the defining property of a Costas
array appears mathematically natural.

Lemma 2.2. Let α be a permutation.
(i) No column of T (α) and no antidiagonal of T (α) contains a repeated

value.
(ii) No row of T (α) contains a repeated value if and only if the permutation

array corresponding to α is a Costas array.

Proof. Part (i) holds because α is a permutation. Part (ii) holds because
the permutation array corresponding to α contains the vector (w,h) starting
from position (α(j), j) if and only if tw,j(α) = h. �
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Lemma 2.3 ([5]). The difference triangle of α ∈ Sn contains exactly n − k
entries from {−k, k}, for each k satisfying 1 ≤ k < n.

Proof. From the n entries of α we can form exactly n−k pairs whose values
differ in magnitude by k (namely the pairs {`, k + `} for 1 ≤ ` ≤ n − k). �

The following lemma specifies relations between certain elements of the
difference triangle. It follows directly from the definition of the difference
triangle and, for part (i), from the permutation property of α. A more
general version of the lemma is given in [24, Section 4.2].

Lemma 2.4. Let α ∈ Sn. Then
(i) for n ≥ 3 and 1 ≤ c ≤ n − 2,

tn−1,1(α) = tn−1−c,1(α) + tn−1−c,1+c(α) if and only if n = 2c + 1

(ii) for n ≥ 4,

tn−3,2(α) = tn−2,1(α) + tn−2,2(α) − tn−1,1(α).
Theorem 2.5 (Taylor [22], Freedman-Levanon [15]). Every pair of Costas
arrays of order n ≥ 4 has a vector in common.

Proof. [8] Suppose, for a contradiction, that α,β are permutations corre-
sponding to Costas arrays of order n ≥ 4 having no vector in common. For
1 ≤ w < n, let tw(α) and tw(β) be the set of elements contained in row w of
T (α) and T (β), respectively, and let tw(α,β) be the multiset union of tw(α)
and tw(β). By assumption and by Lemma 2.2(ii), for each w the multiset
tw(α,β) has no repeated elements and so is actually a set.

For 1 ≤ k < n, we now prove by induction on k that

(2.1) −k, k ∈ tw(α,β) for w = 1,2, . . . , n − k.
For the base case k = 1, we know from Lemma 2.3 that there are a total
of 2(n − 1) entries from {−1,1} distributed over the n − 1 sets {tw(α,β) ∶
1 ≤ w ≤ n − 1}. Since each of these sets contains no repeated elements, we
conclude that −1,1 ∈ tw(α,β) for w = 1,2, . . . , n − 1. This establishes the
base case. Assume now that the cases up to k − 1 hold. By Lemma 2.3,
there are a total of 2(n − k) entries from {−k, k} distributed over the n − 1
sets {tw(α,β) ∶ 1 ≤ w ≤ n − 1}. But the inductive hypothesis implies that
the sets {tw(α,β) ∶ n − k ≤ w ≤ n − 1} contain no elements from {−k, k},
so the 2(n − k) entries from {−k, k} are in fact distributed over the n − k
sets {tw(α,β) ∶ 1 ≤ w ≤ n − k}. Since each of these sets contain no repeated
elements, we conclude that −k, k ∈ tw(α,β) for w = 1,2, . . . , n − k. This
completes the induction.

It follows from (2.1) that tn−k(α,β) = {−k, . . . ,−1,1, . . . k} for 1 ≤ k < n
and, in particular, that

tn−1(α,β) = {−1,1},(2.2)

tn−2(α,β) = {−2,−1,1,2},(2.3)

tn−3(α,β) = {−3,−2,−1,1,2,3}.(2.4)
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We may assume from (2.2) that tn−1(α) = {1} and tn−1(β) = {−1}. Lemma 2.2(i)
then implies that 1 /∈ tn−2(α) and −1 /∈ tn−2(β). Now tn−2(α) ≠ {−2,2} since
otherwise (2.3) would imply the contradiction −1 ∈ tn−2(β), and tn−2(α) ≠{−1,2} otherwise Lemma 2.4(i) with c = 1 would imply the contradiction
n = 3. Therefore tn−2(α) = {−2,−1}, by (2.3). Finally, Lemma 2.4(ii) shows
that tn−3,2(α) = −2 − 1 − 1 = −4, contradicting (2.4). �

3. All-zero corner regions

Definition 3.1. An all-zero corner region of a permutation array A is a
square subarray, whose entries are all 0, containing one of the four corner
elements of A.

The size of an all-zero corner region of a permutation array of order n is
at most ⌊n

2
⌋ × ⌊n

2
⌋, by the permutation property. In this section, we show

that Costas arrays of even order n attain this upper bound only for small
orders (Theorem 3.3). We then use techniques due to Erdős and Turán [12]
and to Erdős et al. [11] to show that, for fixed c > 0, asymptotically no
Costas array of order n with an all-zero corner region of size ⌊cn⌋ × ⌊cn⌋
exists (Theorem 3.5).

We begin with even n and a corner region of size n
2 × n

2 , which is simply
a quadrant. Figure 2 shows examples of Costas arrays of order 2, 4 and 6
containing two diagonally opposite all-zero quadrants. It was conjectured
in 2010 that there are no larger such examples.

Conjecture 3.2 (Russo, Erickson and Beard [21]). No Costas array of even
order greater than 6 contains two all-zero quadrants.

●●
●●● ●

●● ●● ●●
Figure 2. Costas arrays with two all-zero quadrants

We now use Theorem 2.5 to prove a result stronger than the statement
of Conjecture 3.2.

Theorem 3.3. No Costas array of even order greater than 6 contains an
all-zero quadrant.

Proof. Suppose, for a contradiction, that A is a Costas array of order 2m > 6
containing an all-zero quadrant. Since two diagonally opposite quadrants of
a permutation array of even order must contain equally many 1s, the array A
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has two all-zero quadrants in diagonally opposite positions. Each of the other
two quadrants then forms a Costas array of order m > 3. By Theorem 2.5,
these two Costas arrays contain a common vector. This contradicts the
Costas property for A. �

Corollary 3.4 (Conjecture 3.2 holds). No Costas array of even order greater
than 6 contains two all-zero quadrants.

We now demonstrate the asymptotic nonexistence of a Costas array of
order n having an all-zero corner region whose side length grows linearly
with n. Theorem 3.5 below occurs as a special case of a result stated without
proof by Blackburn et al. [2, Section IV.C] and by Etzion [14, Theorem 3].
Although a careful reading of the text of [2, Section IV] can be used to re-
construct a proof of that result, the special case required here (Theorem 3.5)
can be proved directly by means of a short and simple argument that is self-
contained (apart from reference to an elementary result [2, Lemma 13]). As
mentioned in [2] and [14], the underlying method is due to Erdős and Turán
[12] and to Erdős et al. [11].

Theorem 3.5. Let c > 0 be a fixed real number. For all sufficiently large n,
there is no Costas array of order n containing an all-zero corner region of
size ⌊cn⌋ × ⌊cn⌋.
Proof. Suppose, for a contradiction, that A is a Costas array of order n
containing an all-zero corner region of size ⌊cn⌋× ⌊cn⌋ for arbitrarily large n.
Place A on an infinite grid of unit squares in the plane, with the centre of
each cell of A lying on a grid point, and regard each ‘0’ and ‘1’ entry of A as
being written at the centre of its associated cell. Let A′ be the region of the
plane comprising the cells of A in which the ‘1’ entries of A are constrained
to lie, namely an n × n square that is missing a ⌊cn⌋ × ⌊cn⌋ corner square.

Consider the w circles of radius n
2
3 whose centre lies at the centre of a grid

square and which intersect the region A′. The centre of any such circle lies
within distance n

2
3 of some point of A′, and so the grid squares associated

with the centres of these w circles are all completely contained within an(n+2n
2
3 +1)×(n+2n

2
3 +1) region that is missing a ⌊cn⌋×⌊cn⌋ corner region.

Since each grid square has unit area, we therefore have

(3.1) w ≤ (n + 2n
2
3 + 1)2 − ⌊cn⌋2 .

For 1 ≤ i ≤ w, let mi be the number of ‘1’ entries of A contained in the
ith circle and write µ for the mean of the mi. For 1 ≤ j ≤ n, let aj be the
number of circles containing the jth ‘1’ entry of A, so that

(3.2) wµ = n∑
j=1

aj .

We next show that the sum S ∶= ∑w
i=1 (mi

2
) satisfies the inequality

(3.3) w(µ
2
) ≤ S ≤ (a

2
),
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where a is the number of grid points contained in a single circle. The left
inequality of (3.3) is given by rearrangement of the inequality∑w

i=1(mi−µ)2 ≥
0 and the definition of µ. For the right inequality of (3.3), note that S counts
the number of vectors formed by joining pairs of 1s contained in a circle,
summed over all w circles. If we superimpose all w circles then, by the
Costas property, each such vector occurs at most once. Therefore S is at
most the number of vectors joining two grid points contained in a single
circle, namely (a

2
). This establishes (3.3).

Discard S from (3.3) and substitute for µ from (3.2). Rearrange to make
w the subject, and then combine with (3.1) to give

(3.4)
(∑n

j=1 aj)2

a(a − 1) +∑n
j=1 aj

≤ (n + 2n
2
3 + 1)2 − ⌊cn⌋2 .

Since the number of grid points contained in a circle of radius ` is π`2 +
O(`) [2, Lemma 13], we have a = πn 4

3+O(n 2
3 ) and similarly aj = πn 4

3+O(n 2
3 ).

Therefore, to leading order in n, the left side of (3.4) is n2. On the other
hand, to leading order in n, the right side of (3.4) is n2(1 − c2). This gives
the required contradiction as n→∞. �

4. Mirror pairs

In this section we introduce a new structural constraint on permutation
(and, in particular, Costas) arrays.

Transformation of a Costas array under the action of the dihedral group
D4 gives an equivalent Costas array. By applying Theorem 2.5 to a Costas
array A of order at least 4, and its image under reflection in a vertical axis,
we can conclude that A must contain a pair of related vectors. (We can
guarantee additional pairs of related vectors by applying Theorem 2.5 to
A and its image under 90○ or 270○ rotation, but not necessarily to A and
its image under diagonal or antidiagonal reflection.) This motivates the
following definition and proposition.

Definition 4.1. A permutation array contains a mirror pair of width w > 0
and height h > 0 (abbreviated as a (w,h)-mirror pair) if it contains vectors(w,h) and (w,−h).

Proposition 4.2. Every Costas array of order n ≥ 4 contains a mirror pair.

Proof. Let A be a Costas array of order n ≥ 4. By Theorem 2.5, A and its
image under reflection in a vertical axis have a common vector, say (w,h).
Then A contains the vector (w,−h). �

For example, the Costas array of order 7 shown in Figure 3 contains a(3,1)-mirror pair. The condition n ≥ 4 in Proposition 4.2 is necessary: the
endpoints of the vectors (w,h) and (w,−h) must involve distinct ‘1’ entries,
otherwise the permutation property of the Costas array would not hold.

The existence of mirror pairs in Costas arrays is a structural property
that does not appear to have been observed previously. In this section, we
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● ●●● ●●

❏
❏

❏
❏
❏

✡
✡

✡
✡
✡

(a) Costas array corre-
sponding to the permutation[1, 6, 4, 3, 5, 2]

●● ● ●● ●●
������

✏✏✏✏✏✏

(b) Costas array corresponding to
the permutation [2, 5, 7, 1, 6, 3, 4]

Figure 4.13: Examples of mirror pairs in Costas arrays

Definition 56. Let A be a Costas array. A pair of vectors (w,h), (w,−h) in A, where w,h > 0, is

called a mirror pair of width w and height h, or a (w,h)-mirror pair.

By Remark 12, the Costas array A corresponding to the permutation α has a (w,h)-mirror pair

if and only if −h,h ∈ tw(α). We also note that a (w,h)-mirror pair in a Costas array A must involve

four distinct dots; the vectors (w,h) and (w,−h) cannot share a dot, as that would violate the

permutation property of A. Consequently, we consider mirror pairs only for arrays of order n ≥ 4.

Example 57. The difference triangle for the Costas array shown in Figure 4.13(b) is

3 2 −6 5 −3 1

5 −4 −1 2 −2−1 1 −4 3

4 −2 −3

1 −1

2

.

The highlighted (3,1)-mirror pair corresponds to the pair −1,1 in the third row. This Costas array

also has a (1,3)-mirror pair, a (2,2)-mirror pair and a (5,1)-mirror pair.

Analysis of the database of Costas arrays up to order 29 reveals that for 4 ≤ n ≤ 29, every

Costas array of order n contains a mirror pair. We will show that in fact every Costas array of order

Figure 3. A (3,1)-mirror pair in a Costas array of order 7

constrain the vectors of a Costas array by analysing the number of its mirror
pairs and their parameters w and h.

We begin with an upper bound on the number of mirror pairs of width w
in a permutation array.

Proposition 4.3. Let A be a permutation array of order n ≥ 4 containing
mw mirror pairs of width w. Then

(i) m1 ≤ ⌊n
2
⌋ − 1.

(ii) mw ≤ ⌊n−w
2

⌋ for each w satisfying 2 ≤ w ≤ n − 1.

(iii) The total number of mirror pairs in A is at most n(n−2)
4 for n even,

and at most (n+1)(n−3)
4 for n odd.

Proof. For parts (i) and (ii), let 1 ≤ w ≤ n − 1. Since A is a permutation
array, it contains exactly n −w vectors with width (first component) w and
therefore at most ⌊n−w

2
⌋ mirror pairs of width w. It is now sufficient to show

that A cannot contain n−1
2 mirror pairs of width 1 when n is odd. Suppose

otherwise, so that the n − 1 vectors of A with width 1 can be arranged into
mirror pairs of height h1, h2, . . . , hn−1

2
, and let the ‘1’ entry in column 1

of A occur in row i. Then the ‘1’ entry in column n of A occurs in row
i +∑k hk +∑k(−hk) = i, contradicting the permutation property.

Part (iii) is given by summing the bounds of parts (i) and (ii) over w. �

Numerical data obtained from analysis of the database [19] of Costas
arrays, presented in Figure 4, suggest that the actual number of mirror
pairs in a Costas array of order n broadly increases with n, and that its
mean grows faster than linearly with n. In Section 4.1 we shall strengthen
Proposition 4.3 for G-symmetric Costas arrays by using their additional
structure to establish lower and upper bounds on the number of mirror
pairs of various widths. In Section 4.2 we shall fix precisely the number of
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Figure 4. Number of mirror pairs in Costas arrays up to
order 29

mirror pairs of every width in Welch Costas arrays, and state other existence
results for mirror pairs in Welch Costas and Golomb Costas arrays.

The large number of vectors having small width suggests that small val-
ues of w might be more likely to admit mirror pairs of width w. This
leads us to pay particular attention to mirror pairs of small width and,
by similar reasoning, those of small height. Analysis of the database [19]
of Costas arrays shows that there is at least one width 1 mirror pair and
at least one height 1 mirror pair in each Costas array with 4 ≤ n ≤ 8,
with the exception of the Costas arrays corresponding to the permuta-
tions [3,1,2,4], [2,3,5,1,4], [2,6,4,5,1,3], [5,3,2,6,1,4], [2,5,1,6,4,3][3,1,6,3,5,4], [2,6,3,8,1,7,5,4] and [2,8,1,6,5,3,7,4] and their equiva-
lence classes. (Of these, only that corresponding to [5,3,2,6,1,4] lacks
both a width 1 mirror pair and a height 1 mirror pair.) Moreover, there
is at least one width 1 mirror pair and at least one height 1 mirror pair in
every Costas array with 9 ≤ n ≤ 29. These observations prompt the following
question.

Question 4.4. Does every Costas array of order n ≥ 9 contain a mirror
pair of width 1 and a mirror pair of height 1?

We can simplify Question 4.4 by noting the action of D4 on the mirror
pairs of a permutation array.

Remark 4.5. Suppose that a permutation array contains a (w,h)-mirror
pair. Then so does its image under horizontal reflection, vertical reflection
and rotation by 180○. Its image under diagonal reflection, antidiagonal re-
flection and rotation by 90○ and 270○ contains an (h,w)-mirror pair.
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We see that in order to answer Question 4.4 with yes, it would be sufficient
to show that there is at least one width 1 mirror pair in each Costas array of
order n ≥ 9 (not just in the equivalence class of each Costas array). Indeed,
by Remark 4.5, there would then also be at least one height 1 mirror pair
in each such Costas array. Numerical data presented in Figure 5 suggest
that the number of width 1 mirror pairs in a Costas array of order n grows
with n, providing evidence that the answer to Question 4.4 is yes. Figure 5
also shows that the upper bound on the number m1 of width 1 mirror pairs,
given in Proposition 4.3(i), is attained for all n in the range 4 ≤ n ≤ 29 except
24, 25, and 26. We shall see in Theorem 4.10(i) that all G-symmetric Costas
arrays of order n attain this upper bound.

Figure 5. Number m1 of width 1 mirror pairs in Costas
arrays up to order 29

Analysis of the Costas array database [19] also shows that for 14 ≤ n ≤ 29
every Costas array of order n has a mirror pair of width 2 and therefore, by
Remark 4.5, a mirror pair of height 2. This prompts the following question.

Question 4.6. Does every Costas array of order n ≥ 14 have a mirror pair
of width 2 and a mirror pair of height 2?

Questions 4.4 and 4.6 are more easily studied for Costas arrays that are al-
gebraically constrained (G-symmetric Costas arrays) or constructed (Welch
Costas arrays and Golomb Costas arrays). We will examine the mirror pairs
of small width and height in these classes of Costas arrays in Sections 4.1
and 4.2. Before doing so, we will provide a partial answer to Questions 4.4
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and 4.6 for all Costas arrays, without imposing any such algebraic restric-
tions, in Theorem 4.7.

Some of our proofs make extensive use of the difference triangle. By
Definition 2.1, a Costas array with corresponding permutation α contains a(w,h)-mirror pair if and only if both −h and h appear in row w of T (α).
Theorem 4.7. Every Costas array of order n ≥ 6 contains a mirror pair of
width 1 or 2 and a mirror pair of height 1 or 2.

Proof. By Remark 4.5, it is sufficient to show that every Costas array of or-
der n ≥ 6 contains a mirror pair of height 1 or 2. Suppose, for a contradiction,
that A is a Costas array of order n ≥ 6, with corresponding permutation α,
containing neither a mirror pair of height 1 nor a mirror pair of height 2.
Then no row of T (α) contains more than one entry from {−1,1} and no row
of T (α) contains more than one entry from {−2,2}. Since T (α) contains
exactly n−1 entries from {−1,1} by Lemma 2.3, it therefore contains exactly
one entry from {−1,1} in each of its n−1 rows. This accounts for the single
entry of row n−1 of T (α); and since T (α) contains exactly n−2 entries from{−2,2} by Lemma 2.3, it must then contain exactly one entry from {−2,2}
in each of its first n − 2 rows.

Write row i of T (α) as ri(α). By Remark 4.5, both rotation of A
through 180○ and reflection of A in a horizontal axis leave the mirror pairs
of A unchanged, but the first transformation reflects the rows of T (α) and
the second negates the entries of T (α). We may therefore assume that
rn−1(α) = (1) and rn−2(α) = (x, y), where x ∈ {−1,1} and y ∈ {−2,2}.
Lemma 2.2(i) then gives x = −1, and Lemma 2.4(i) with c = 1 gives y = −2.
Then by Lemma 2.4(ii), rn−3(α) = (u,−4, v), where {∣u∣, ∣v∣} = {1,2}. By
Lemma 2.2(i) we have u /∈ {−1,1} and v ≠ 1, so (u, v) = (2,−1) or (−2,−1).
But by Lemma 2.4(i) with c = 2, we have u + v ≠ 1 since n ≥ 6. This forces(u, v) = (−2,−1), so the last three rows of T (α) are as shown below.

−2 −4 −1−1 −2

1

From these entries of T (α) and the assumption n ≥ 6 we obtain α =[m,m + 3,m + 2, . . . ,m − 2,m − 1,m + 1] for some m. Then the first row of
T (α) contains both (m + 2) − (m + 3) = −1 and (m − 1) − (m − 2) = 1, which
is a contradiction. �

By examining all Costas arrays of order 4 and 5, we can extend Theo-
rem 4.7 to n ≥ 4, with the exception of the Costas array corresponding to
the permutation [2,3,5,1,4] and its equivalence class.

4.1. Mirror pairs in G-symmetric Costas arrays.
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Definition 4.8. An n × n array corresponding to the permutation γ is G-
symmetric if

n is even and γ(j + n
2
) + γ(j) = n + 1 for 1 ≤ j ≤ n

2
or

n is odd and γ(n + 1
2

) = n + 1
2

and γ(j+n + 1
2

)+γ(j) = n+1 for 1 ≤ j ≤ n − 1
2

.

In this section, we consider mirror pairs in G-symmetric Costas arrays of
order n. We show the answer to Question 4.4 for this class of Costas arrays
is yes for even n (Theorem 4.10(i) and Theorem 4.13). We also provide
a partial answer to Question 4.4 for odd n by showing the existence of a
width 1, but not necessarily a height 1, mirror pair for arrays in this class
(Theorem 4.10(i)). We likewise provide a partial answer to Question 4.6
for all n for arrays in this class (Theorem 4.10(ii)). Furthermore, we con-
strain the total number of mirror pairs in a G-symmetric Costas array more
strongly than in Proposition 4.3(iii) (Theorem 4.10(v)) by proving new lower
and upper bounds for various widths.

We call ‘1’ entries of a G-symmetric array that are separated by ⌊n+1
2

⌋
columns G-symmetric images of each other. We require the following lemma
in the proof of Theorem 4.10.

Lemma 4.9. Let G be a G-symmetric Costas array of order n ≥ 4, and let L
and R denote the leftmost ⌊n

2
⌋ and rightmost ⌊n

2
⌋ columns of G, respectively.

(i) Every vector joining ‘1’ entries in L forms a mirror pair with the vector
in R that joins the G-symmetric images of its endpoints.

(ii) If one vector of a mirror pair in G joins a ‘1’ entry in L to a ‘1’ entry
in R then so does the other. The G-symmetric images of the endpoints
of two such vectors that form a (w,h)-mirror pair are the endpoints of
two such vectors that form a (2 ⌊n+1

2
⌋ −w,h)-mirror pair.

Proof. For part (i), let 1 ≤ w ≤ ⌊n
2
⌋ − 1 and 1 ≤ j ≤ ⌊n

2
⌋ −w. By G-symmetry,

the vector in L joining the ‘1’ entries in columns j and j +w forms a mirror
pair of width w with the vector inR joining the ‘1’ entries in columns j+⌊n+1

2
⌋

and j + w + ⌊n+1
2

⌋. Part (ii) follows from part (i), the Costas property and
G-symmetry. �

Theorem 4.10. Let G be a G-symmetric Costas array of order n ≥ 4 con-
taining mw mirror pairs of width w. Then

(i) m1 = ⌊n
2
⌋ − 1.

(ii) mw ≥ ⌊n
2
⌋ −w for each w satisfying 2 ≤ w ≤ ⌊n

2
⌋ − 1.

(iii) mw ≤ ⌊n−w
2

⌋ for each w satisfying 2 ≤ w ≤ n − 1.

(iv) m⌊n+1
2

⌋ = 0.
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(v) For even n, the total number of mirror pairs in G lies in the interval

[n(n − 2)
8

,
n(n − 2)

4
− ⌊n

4
⌋]

and has the same parity as n(n−2)
8 . For odd n, the total number of

mirror pairs in G lies in the interval

[(n − 1)(n − 3)
8

,
(n + 1)(n − 3)

4
− ⌊n − 1

4
⌋] .

Proof. For parts (i) and (ii), let 1 ≤ w ≤ ⌊n
2
⌋ − 1. Lemma 4.9(i) accounts

for ⌊n
2
⌋ −w mirror pairs of width w to give part (ii), and combination with

Proposition 4.3(i) gives part (i).
Part (iii) restates Proposition 4.3(ii).
For part (iv), since the endpoints of a vector of width ⌊n+1

2
⌋ in G are

G-symmetric images of each other, their vertical separation varies with the
smaller of the row numbers in which they occur. Therefore no two distinct
vectors of width ⌊n+1

2
⌋ in G have endpoints with the same vertical separation,

and so G does not contain a mirror pair of width ⌊n+1
2

⌋.
For part (v), the intervals for the total number of mirror pairs in G are

given by combining all previous parts. For even n, the lower limit of the
interval is a count via Lemma 4.9(i) of the mirror pairs involving a vector
joining ‘1’ entries in the left half of G and a vector joining ‘1’ entries in the
right half of G. Since this count exhausts every such vector, all other mirror
pairs must involve vectors joining a ‘1’ entry in the left half of G to a ‘1’
entry in the right half of G. Then by Lemma 4.9(ii), these additional mirror
pairs can be associated using G-symmetry into pairs, and by part (iv) no
mirror pair is associated with itself. This gives the parity condition. �

The upper bound given in Theorem 4.10(v) on the total number of mirror
pairs in a G-symmetric Costas array of order n is strictly larger than the
lower bound for all n > 4. This upper bound is attained by a G-symmetric
Costas array of order n in the case n = 5 (corresponding permutation[2,5,3,4,1], total two mirror pairs), the case n = 6 (corresponding permu-
tation [1,5,3,6,2,4], total five mirror pairs), the case n = 8 (corresponding
permutations [1,8,6,3,7,2,4,5], [1,6,7,4,8,3,2,5], [7,1,2,8,4,6,5,3], to-
tal ten mirror pairs each), but in no other case in the range 8 < n ≤ 28
(by reference to the Costas array database [1] for n < 28, and [10], [23] for
n = 28).

We noted previously that if every Costas array of order n contains a
width 1 mirror pair then, by Remark 4.5, it also contains a height 1 mir-
ror pair. However, we cannot conclude from Theorem 4.10(i) that every
G-symmetric Costas array of order n ≥ 4 contains even a single mirror pair
of height 1, because G-symmetry is not preserved under the transpose oper-
ation. Nonetheless, we shall prove in Theorem 4.13 that (apart from some
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small exceptions) every G-symmetric Costas array of even order indeed con-
tains a height 1 mirror pair. We firstly establish two lemmas, in preparation
for a proof by contradiction.

Lemma 4.11. Suppose that G is a G-symmetric Costas array of even or-
der n, corresponding to the permutation γ and containing no mirror pair of
height 1. Then the first n

2 elements of γ all have the same parity.

Proof. No vector of G of height 1 is completely contained in the left half or
the right half of G, otherwise by Lemma 4.9(i) G would contain a mirror
pair of height 1. Therefore no two ‘1’ entries in the left half of G occur
in consecutive rows, and no two ‘1’ entries in the right half of G occur in
consecutive rows. It follows that the ‘1’ entry in row i of G occurs in the
opposite half from the ‘1’ entry in row i + 1. �

We next constrain the difference triangle of a permutation γ satisfying
the parity constraint in Lemma 4.11.

Lemma 4.12. Let G be a G-symmetric Costas array of even order n, cor-
responding to the permutation γ, and suppose that the first n

2 entries of γ
all have the same parity. Let T1 and T2 be the triangular regions of T (γ)
indicated below, each involving n

2 − 1 rows.

T1 T2

Then
(i) all entries in T1 are even, and T2 = −T1

(ii) for 1 ≤ w ≤ n
2 − 1, row w of T1 contains exactly one element from each

of {−2,2},{−4,4}, . . . ,{−(n − 2w), n − 2w}.

Proof. For (i), let 1 ≤ w ≤ n
2 − 1 and 1 ≤ j ≤ n

2 − w. The (w, j) entry of T1

is γ(w + j) − γ(j), which is even because γ(w + j) and γ(j) have the same
parity. The (w, j) entry of T2 is γ(w+ j + n

2 )−γ(j + n
2 ) = (n + 1 − γ(w + j))−(n + 1 − γ(j)) by G-symmetry, and so T2 = −T1.

For (ii), let 1 ≤ w ≤ n
2 −1. For each k satisfying 1 ≤ k ≤ n

2 −1, by Lemma 2.3
the difference triangle T (γ) contains exactly n−2k elements from {−2k,2k}.
There are a total of n

2 (n
2 −1) of these even elements in T (γ), and by (i) they

are all contained in T1 ∪ T2. We deduce from T2 = −T1 that, for each k
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satisfying 1 ≤ k ≤ n
2 − 1, the triangle T1 contains exactly n

2 − k elements from{−2k,2k} distributed over its n
2 − 1 rows. By Lemma 2.2(ii) and T2 = −T1,

no two such elements occur in the same row of T1. The result now follows
by a simple induction. �

We can now classify the G-symmetric Costas arrays of even order n ≥ 4
that do not contain a mirror pair of height 1.

Theorem 4.13. The only G-symmetric Costas arrays of even order n ≥ 4
that do not contain a mirror pair of height 1 are those corresponding to the
permutations [3,1,2,4] and [2,6,4,5,1,3] and their images under horizontal
reflection, vertical reflection and 180○ rotation.

Proof. Suppose that G is a G-symmetric Costas array of even order n ≥
4, corresponding to the permutation γ and containing no mirror pair of
height 1. By Lemma 4.11, the conclusions of Lemma 4.12 hold.

By Lemma 2.3, T (γ) has exactly n − 1 entries from {−1,1}, and by as-
sumption no two are in the same row. Therefore

(4.1) each row of T (γ) contains exactly one entry from {−1,1}.

Since horizontal reflection, vertical reflection and 180○ rotation preserve G-
symmetry, we may assume that tn−1,1(γ) = 1 and, using Lemma 2.2(i), that
tn−2,1(γ) = −1. Write γ(1) = m, so that γ(n − 1) = m − 1 and γ(n) = m + 1.
Then t1,n−1(γ) = 2, which by Lemma 4.12(i) gives t1, n

2
−1(γ) = −2.

For n = 4, this last conclusion reduces to t1,1(γ) = −2 and so γ = [m,m −
2,m − 1,m + 1], which forces γ = [3,1,2,4]. For n > 4, Lemmas 4.12(ii) and
2.2(i) together give tn

2
−1,1(γ) = 2, and then Lemma 4.12(i) gives tn

2
−1, n

2
+1(γ) =−2. For n = 6, this implies that γ = [m,m + 4,m + 2,m + 3,m − 1,m + 1],

which forces γ = [2,6,4,5,1,3]. It is easily verified that in both these cases
n = 4 and n = 6, G is a G-symmetric Costas array but its transpose is not,
giving the eight exceptional Costas arrays.

Otherwise, for n ≥ 8, we seek a contradiction. Write x = t1,1(γ) and
y = tn−3,2(γ) (see Figure 6). By Lemma 2.2(ii) we have x ≠ −2, so γ(2) ≠
m − 2. Then y = γ(n − 1) − γ(2) ≠ 1, and therefore tn−3,3(γ) = −1 by (4.1)
and repeated use of Lemma 2.2(i). This implies that γ(3) = m + 2, and so
t2,1(γ) = 2. This contradicts Lemma 2.2(i) because 2 ≠ n

2 − 1.
�

4.2. Mirror pairs in algebraically constructed Costas arrays. In this
section, we consider mirror pairs in the two main classes of algebraically
constructed Costas arrays: Welch Costas and Golomb Costas arrays.

Theorem 4.14 (Welch Construction W1(p, φ, c) [16]). Let φ be a primi-
tive element of Fp, where p is a prime, and let c be a constant. Then the
permutation array (Ai,j) of order p − 1 with

Ai,j = 1 if and only if φj+c−1 ≡ i (mod p)
is a Costas array.
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x ⋯ −2 ⋯ 2

⋮ ⋮ ⋮
2 ⋯ −2

⋯⋮
y −1−1

1

Figure 6. Difference triangle T (γ) for the proof of Theorem 4.13

Varying the parameter c in the construction of Theorem 4.14 in the range
0, . . . , p−2 corresponds to cyclically shifting the columns of the Welch Costas
array (Ai,j).
Theorem 4.15 (Golomb construction G2(q, φ, ρ) [17]). Let φ and ρ be (not
necessarily distinct) primitive elements of Fq, where q is a power of a prime.
Then the permutation array (Ai,j) of order q − 2 for which

Ai,j = 1 if and only if φi + ρj = 1

is a Costas array.

We firstly show that all Welch Costas arrays of order p − 1 ≥ 4 contain
exactly (p−1)(p−3)

8 mirror pairs (Theorem 4.16). We then state further results
on mirror pairs in Welch Costas and Golomb Costas arrays, whose proofs
can be found in [24].

Every Welch Costas array is G-symmetric [13] and, as stated in Theo-
rem 4.10(v), all G-symmetric Costas arrays of even order n contain at least
n(n−2)

8 mirror pairs. Although this minimum number can be exceeded (see
Section 4.1 for examples with n = 6 and n = 8), we now show that it cannot
be exceeded for the subclass of Welch Costas arrays.

Theorem 4.16. Every Welch Costas array of order p−1 ≥ 4 contains exactly
(p−1)(p−3)

8 mirror pairs, namely those specified in Lemma 4.9(i).

Proof. Let W be a W1(p, φ, c) Welch Costas array of order p− 1 ≥ 4, so that
W contains all (p−1)(p−3)

8 mirror pairs specified in Lemma 4.9(i). Suppose,
for a contradiction, that W also contains some other (w,h)-mirror pair. By
Lemma 4.9(ii), both vectors of the mirror pair cross the vertical bisector
of W , and by Lemma 4.9(ii) and Theorem 4.10(iv) we may take w < p−1

2 .
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Let the leftmost of the right endpoints of the two vectors of the (w,h)-
mirror pair occur in column j > p−1

2 . The array W ′ obtained by cyclically
shifting the columns of W by j− p−1

2 places to the left then contains a (w,h)-
mirror pair exactly one of whose vectors crosses its vertical bisector. But W ′

is the Welch Costas array W1(p, φ, c+ j − p−1
2 ), which by the same argument

as given above cannot contain such a mirror pair. �

The answer to Question 4.4 for Welch Costas arrays is yes, by combination
of Theorem 4.10(i) with the following corollary to Theorem 4.13.

Corollary 4.17 ([24, Corollary 77]). For p ≥ 5, every W1(p, φ, c) Welch
Costas array contains at least one mirror pair of height 1 unless (p, φ, c)
belongs to the set

{(5,2,3), (5,2,1), (5,3,2), (5,3,0), (7,3,2), (7,3,5), (7,5,5), (7,5,2)}.
Theorem 4.18 gives further restrictions on the mirror pairs of small width

and height in a Welch Costas array.

Theorem 4.18 ([24, Theorem 81]). For p ≥ 5, every W1(p, φ, c) Welch
Costas array contains a (1,1)-mirror pair or a (1,2)-mirror pair or a (2,1)-
mirror pair.

Theorem 4.19 gives an analogous result to Theorem 4.18 for the existence
of mirror pairs with constrained width and height in a Golomb Costas array
In particular, it shows that every Golomb Costas array of order at least 7
contains a (1, h)-mirror pair with h ∈ {1,2,3}. So every Golomb Costas
array of order at least 7 contains a mirror pair of width 1, and therefore
a mirror pair of height 1 by Remark 4.5 (since the set of Golomb Costas
arrays is closed under the transpose operation). This shows that the answer
to Question 4.4 for Golomb Costas arrays is yes.

Theorem 4.19 ([24, Theorem 83]). The only Golomb Costas arrays of
order q − 2 ≥ 5 that do not contain a (1, h)-mirror pair for all h ∈ {1,2,3}
are that corresponding to the permutation [5,3,2,6,1,4] and its image under
horizontal reflection, vertical reflection and 180○ rotation.
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